==> disqualified: Mick Potzkai 3,14159265358979323846264338197150288432796939937510 Falls die Zahl nicht richtig ist, hat Anthony wahrscheinlich ein paar ziffern falsch auswendig gelernt ¯\_(ツ)_/¯ ==> disqualified: K -infty ==> small-on-purpose: Felix B 0. If this wins, I'll get infinite chocolate, making 0 the unique highest-expectancy submission! If you didn't want this to be valid, you should have for a "strictly positive" natural number ;-) (See for example https://proofwiki.org/wiki/Definition:Positive ) ==> small-on-purpose: maxx 1 ==> small-on-purpose: 0 ==> small-on-purpose: 2 ==> small-on-purpose: Matthias 5 ==> small-on-purpose: passt 1 ==> primes: Goni 50. Mersenne-Primzahl * 42 ==> primes: ZauberFeenPony 2^(4096*8) -1 ==> nines: fsoe 9!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ==> nines: Hennich 9!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ==> nines: dsapikas 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 ==> nines: k4nt0r cardinality of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of the powerset of a set containing 10^10 elements ==> nines: KujaEx 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 ==> nines: Baum 9!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ==> nines: tmk 9999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999 ==> nines: raspyweather 9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^99^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^99^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9 ==> nines: gambit 9!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ==> nines: jackbot, obi 9!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! ==> hyper: isnok For positive integer x let f(x) be defined as "x x-arrows x" by using the general Knuth's up-arrow notation (see english wikipedia for reference). Then z := f(0x35c3) is a number (0x... meaning hexadecimal). Now apply f f(z)-times to z to get the number i. Calculate f(i^f(i)) and choose j to be 0xF...F with so many Fs. Now apply f f(j)-times to j to get k. k+3 is a big number. ==> hyper: room2042 $9\uparrow^{9\uparrow^{9\uparrow9999999999999999999}9}9$ ==> hyper: c0d3z3r0 Let A(m, n) be the Ackermann–Péter function defined for m = 0: A(m, n) = n + 1 for m > 0 and n = 0: A(m - 1, 1) and for m > 0 and n > 0: A(m - 1, A(m, n - 1)) Let c be the tetration operator e.g. 2c4 = 2[4]4 = 2^^4 = 65536 Let ! be the factorial and e.g. !!! a repeated application e.g. 3!!! = 6!! = 720! ~ 2.601218943x10^1746 Let ! have a higher operator precedence than tetration c e.g. in 34c3!, 3! is evaluated first. Now we define a simple function f(m,n) = A(A(A(A(A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n))),A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n)))),A(A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n))),A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n))))),A(A(A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n))),A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n)))),A(A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n))),A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n)))))),A(A(A(A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n))),A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n)))),A(A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n))),A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n))))),A(A(A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n))),A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n)))),A(A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n))),A(A(A(m,n),A(m,n)),A(A(m,n),A(m,n))))))) and evaluate f for m = 35c3!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! and n = 35c3!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! p.s. should be pretty large p.p.s. in case i've missed some parentheses head over to https://xkcd.com/297/ p.p.p.s. there is no largest number https://www.scottaaronson.com/writings/bignumbers.html p.p.p.p.s. in case the number is to small there is always another level of indirection/recursion to f(m,n) p.p.p.p.p.s. f(m, n) = 1 iff all other submitted numbers are 1. ==> hyper: ninewise ackermann(42, 42) + 1 ==> hyper: Andreas und Markus Gegeben ist folgendes Programm was eine große Zahl ("bignumber") auf dem Bildschirm ausgibt: void calcvalue(uint64 cond) { uint64 y=yold=getyear(); printf('9↑'); while (1) { printf('↑'); y=getyear(); //Get current year if (y!=yold) {cond--}; yold=y; if (cond==0) {break;} } printf('9'); } Das Programm calcvalue(2^64-1) wird auf einem Rechner berechnet, der 100 PFlops macht. Aufgrund des Forstschritts wird der Rechner jedes Jahr durch einen doppelt so schnellen Rechner ersetzt. Nachdem das Programm durchgelaufen ist, wird ein neuer Rechner angeschafft, der pro Sekunde "bignumber" Zyklen schafft. Auf diesem Rechner wird das Programm erneut ausgeführt. Das Ergebnis ist die dabei auf einen größeren Bildschirm dargestellte Zahl "verybignumber". ==> hyper: ruben&henne (Vorschlag 3) b ist die Basis des verwendeten Zahlensystems, wobei b die Ziffer 9 gefolgt von Quindezilliquingentillinillimillion Nullen ist. f ist eine rekursive Funktion mit dem Argument n = b-1. f ist wie folgt definiert: f(n) = (n)^f(n-1), wenn n >= 1 und f(n) = 1, wenn n < 1. Die gesuchte Zahl ist das Ergebnis der ausgerechnete Funktion f(n). ==> hyper: ruben&henne b ist die Basis des verwendeten Zahlensystems, wobei b die Ziffer 9 gefolgt von einer Duzentilliarde Nullen ist. f sei eine rekursive Funktion mit dem Argument n = b-1. f ist wie folgt definiert: f(n) = (n)^f(n-1), wenn n >= 1 und f(n) = 1, wenn n < 1. ==> hyper: atlas128 G is Graham's Number. H = G ↑^G G ==> hyper: timon ack 0 n = succ n ack m 0 = ack (pred m) 1 ack m n = ack (pred m) (ack m (pred n)) ack' a = ack a a step func times val = iterate f val !! times step' :: (Integer -> Integer) -> Integer -> Integer step' func val = step func val val v0 = ack' 10000 v1 = step' ack' v0 nextstep :: Integer -> Integer nextstep val = step' ack val v2 = step nextstep v1 iternextstep :: (Integer -> Integer) -> Integer -> Integer iternextstep func val = step' (step' func) v2 result = step' (iternextstep ) v2 ==> hyper: Bind0 9↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑9 ==> hyper: strangeglyph # [i] is ith entry in hyperoperation sequence x = 9 [9] 9 for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) for _ in range(x [x] x) x = x [x] x return x ==> hyper: Jael (aka "kassandra98") Let x be Graham's Number. As one can stack multiple power functions together (m to the power of m to the power of m ... to the power of m), I want to describe how often those are stacked together with something I'll from now on call J-power. (So: m to the J-power of 1 means „m to the power of m“, m to the J-power of 3 means „((m to the power of m) to the power of m) to the power of m“ and so on). Let now y be ((((((x to the J-power of x) to the J-power of x) to the J-power of x) to the J-power of x) to the J-power of x) to the J-power of x). I now define my own factorial function: Usually, m factorial means m * (m-1) * (m-2) * … * 2 * 1 (when used on natural numbers). I want the step size not to be 1, but by 10^(-15); so that m * (m - 10^(-15)) * (m - 2*10^(-15)) * (m – 3*10^(-15)) * … * 1. I still want it to start with m and end with 1. I will call this function J-factorial from now on. Or, perhaps a better notation: If m factorial means 1* 2* 3* … * m then m J-factorial means 1* 1,000000000000001 * 1,000000000000002 * 1,000000000000003 * … * 2 * 2,000000000000001 * … * m My number is the result of J-factorial used on y. ==> hyper: accek a#:=A001695_a;9################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################################# ==> hyper: laus3r 9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9^9! ==> hyper: ruben&henne (Vorschlag 2) googolplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplexplex ==> hyper: JanUlrich --haskell code. main prints the number to submit main = let num = toInteger 99999999999999999999999999999999999999999999999999 in print $ ackermann num num ackermann m n = if m == 0 then n + 1 else if n == 0 then ackermann (m - 1) 1 else ackermann (m - 1) (ackermann m $ n - 1) ==> hyper: Monsterzahl Graham Zahl G(64): 2 hoch G(24) ==> hyper: waitbutwhy Grahams Zahl ==> hyper: Hennich, Marc def a(x,y): if x==0:return y+1 if y==0:return a(x-1,1) return a(x-1,a(x,y-1)) def b(n): if n==0:return 9 return a(b(n-1),b(n-1)) def c(n): if n==0:return 9 return b(c(n-1)) def d(n): if n==0:return 9 return c(d(n-1)) d(9) ==> hyper: Andreas und Markus 9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9→9999 ==> hyper: timon we construct the function f, which takes one integer as a argument: t(x){ goes through all turing machines of godel number smaller than x and runs each of these turing machienes up to x steps. The sum of the results of these turing machines is returned. } g(x){ takes an argument and calls f with it, stores the result and calls f with the result again. with that result it calls f again and so on for x steps } h(f, x){ takes a function and a value. calculates f . f . f . f .... (repeated x times) and returns this composition of functions. } z(f,x){ returns h(g,x) (x) } we call z with 1000**100000000 Even one step of f will give a very large number. but repeating it with g gives a even bigger number. But repeating the reeating with h gives a terribly large number. Repeating that with z leaves us with something that is mindboggingly big. Im too tired to wrap this with more layers of iteration ==> hyper: Fuchsi* Let g := 10^100 (1 googol). Let ^ denote exponentiation. Let | denote "Knuth's up arrow". Let |^n denote n successive up arrows. Follow the following instruction: 1) x := g ; i := 1 2) x := x |^x x ; i := i+1 3) if (i < g |^g g) go to 2). ==> hyper: Test Ingo Ingo ==> hyper: Claude Grahams Number. ==> hyper: Chrischan (Bitte in Monospace-Schrift anzeigen!) Sei f(a,n,b) = a |^n b , wobei |^n eine Schreibweise für den Knuth'schen n-Pfeiloperator darstellt, der für alle ganzen Zahlen a, b, n (mit a>1, b>=0 und n>=0) wie folgt definiert ist: - | a * b , wenn n = 0 und b > 0 a |^n b := | 1 , wenn n >= 1 und b = 0 | a |^(n-1) (a |^n (b-1) ) , sonst - Bestimme die gesuchte große Zahl y als Funktionswert von f wie folgt: y = f(x,x,x) mit x = 99999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999999! ==> hyper: Verschlüssi A(13763,13763), where A() is the Ackermann-Péter-function as defined in https://en.wikipedia.org/wiki/Ackermann_function ==> hyper: jr def r(n): return rec_ack_helper(n, 'A(9,9)') def rec_ack_helper(n, acc): return acc if n<=0 else rec_ack_helper(n-1, f'A({acc},{acc})') my entry is: r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(rr(r(r(r(r(r(r(r(r((r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(r(rr(r(r(r(r(r(r(r(r((r(r(r(r(r(r(r(9)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) ==> hyper: Pi314 Let G_64 be defined as Grahams Number. Analogou G_n. Entry Number: G_Googolplexplexplex ==> hyper: Miguel Marco 2 (The answer by Miguel Marco 1)↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑9 ==> hyper: mest f(x) := factorial(x) n := number of atoms in the galaxy x = f(n) for (i=1;i++;i hyper: Andreas und Markus 9↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑999 ==> hyper: FabaBenni function ack(n, m) while n ≠ 0 if m = 0 m:= 1 else m:= ack(n, m - 1) n:= n - 1 return m + 1 x = M82589933 // 51. bekannte Primzahl vom Mersenne-Typ; falls das ungültig ist x:=ack(42,42) y := ack(x,x) i := 0 while i < ack(x,x) y = ack(y,y) i:=i+1 return y ==> hyper: Volker Diels-Grabsch cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(cg(9))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) where cg() is the Conway and Guy function ==> hyper: Miguel Marco 1 9↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑↑999 ==> tree: ehonda S(0, n) = SSCG(n) [Friedman] f(j, 0, n) = S(j, n) f(j, i+1, n) = S(j, f(j, i, n)) S(j+1, n) = f(j, n, n) N = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S (S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S( S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S (S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S( S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S (S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S( S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S (S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S( S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S (S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S( S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S (S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S( S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(S(9,9), 9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9), 9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),9),...) ==> bb: flov Let q[f,0](x) = f(x) Let q[f,i](x) = q[f,i-1](x) Let BB(x) be the x-ths Busy Beaver Number Let a[0](x) be q[BB,x](10) Let a[i](x) = q[a[i-1],x](10) My number is a[10](10) ==> bb: 23dd1ade1f7e54319f2937b6738bfb44c45b48e1 (will not be able to attend the talk - sure, this could be made bigger, but concision has value: it's all about those theoretical seven candy bars) BB^{BB(G)}(G) if BB(n) is the nth Busy Beaver number, f^n(x) is the recursive application f([...]f(x)) n times, and G is Graham's number. ==> bb: 1+bbn(bbn(bbn(bbn(bbn(bbn(0x35c3)))))) where bbn(n) stands for the n-th term of the busy beaver sequence, or value of the Rado's Sigma function at n (described as here: https://oeis.org/wiki/Busy_Beaver_numbers#Rado.27s_sigma_function) I've put many evaluation of bbn just to try to have a bigger number than my neighbor :) ==> bb: FJW I have two candidates: First number: The lowest integer that is larger than every number submitted by any other participant in this competition. ;-) Second number: Define the following functions: R(0):=99 R(n):=Maximum number of steps of a halting Turing-machine with R(n-1) states and an alphabet of size R(n-1) that, if n > 1, has access to an oracle that writes the maximum number of steps that a halting Turing-machine of it' own kind can run if it's alphabet has at most size R(n-2). A(f,n):=(f^A(f,n-1))(A(f,n-1)) A(f,0):=f(R(99)) // regarding the notation: (f^3)(x) := f(f(f(x))) b[0](i):=R(i) b[j](0,n):=A(b[j-1],b[j-1](n),b[j-1](n)) b[j](i,n):=A(b[j],i-1, b[j](i-1,n)) c(n) := A(b[n],n,n) x := c(c(999999999999999999)) My second number is: (c^x)(x) Also: The space here really is excessive! ;-) ==> bb: BH11235 [$f](x)=f(f(..{f(x) times}..f(x)));[$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$busybeaver](2) ==> bb: flov Let q[f,0](x) be f(x) Let q[f,i](x) be f(q[f,i-1](x)) Let BB(x) be the x-ths Busy Beaver Number Let a[0](x) be q[BB,x](10) Let a[i](x) be q[a[i-1],x](10) My number is a[10](10) ==> bb: Volker Diels-Grabsch f^99999(9) where f() is the busy beaver function ==> bb: Volker Diels-Grabsch f^99999(9) where f(n) := TREE(n) is Friedman's TREE function ==> bb: Mewp idot(BB, 23↑⁴²2137, 23↑⁴²2137), where idot(f, 0, m) = f(m), idot(f, n, m) = f(idot(f, n-1, m)), BB(n) is the Busy beaver function (called Σ on wikipedia [1]), and ↑ⁿ is n knuth up-arrows [2]. [1]: https://en.wikipedia.org/wiki/Busy_beaver [2]: https://en.wikipedia.org/wiki/Knuth%27s_up-arrow_notation You said unique, finite, and natural, and it is. What it isn't is computable, and it grows faster than any computable function. And I still have a lot of space left! So, the number described above, to the power of the number of bytes left, which is 3518. ==> bb: qb BB: Busy Beaver shift #—1, 6, 21, etc Let n be BB(BB(BB([...]BB(23))) with BB(BB(42)) applications of BB where the ... is. Let m be BB(BB(BB([...]BB(23))) with n applications of BB. This description could be continued until 4096 bytes are exhausted, but I'm too lazy for that. (Shamelessly ripped off from https://www.scottaaronson.com/writings/bignumbers.html.) ==> rayo: mk2510, lm Rayos number (credit to Rayo ;) ) ==> rayo: strangeglyph 1 + the largest number describable using 4096 bytes or less ==> referential: Douglas 42 more than the number that would have won this contest if I hadn't participated ==> referential: phix23 the product of all previously submitted positive numbers that are valid submissions ==> referential: Wuzzy n+1 Let S be the set of all valid numbers submitted to the 35C3 Large Numbers Contest, excluding this one. Then n is defined as the largest number of the set S. ==> referential: BH11235 /* Smartalec buster. This entry was written specifically to disqualify a certain kind of entry. By design, this entry cannot win the contest. */ Let S = the set of submitted entries, other than this one, that explicitly refer to the values of other entries (e.g. "largest other submission+1", etc.) if |S| = 0: this_entry = 1 //no harm done else: this_entry = sum([eval(s) for s in S]) //there is now no consistent way to resolve the value of this entry, and all entries in S. //this entry, and all entries in S, should therefore be disqualified. //all other entries are unaffected ==> referential: Mewp Take the set of all the numbers submitted in this contest, aside from this submission. From this set, choose the largest number, and square it. If there are other solutions based on the set of the submitted ones, evaluate this one last. This entry is submitted mostly to preempt other solutions like that. I don't know whether it should be accepted, but it doesn't *technically* break any rules. ==> referential: timon The sum of all other submission made by other participants of this contest, squared ==> referential: strangeglyph the product of all other valid positive submissions ==> referential: Thomas (The highest solution of every other contestens including the sample solution) + 1 ==> referential: caylee 2^(the sum of all numbers submitted to this contest, that are valid and are not referencing other submissions to this contest) ==> referential: mwarning var max = 42; for entry in entries { if entry > max { max = entry; } } println!("My Entry: {}", max + 1); ==> referential: caylee BB is the busy-beaver-function. We define a function CC(x,y) which is defined as BB(BB(BB(...(x)))), using BB y times. We define a function DD(x,y,z) which is defined as CC(CC(...)), using CC z times. We define in the same way EE, FF, GG, ... and rename this as BB_0 for BB, BB_1 for CC, ... Let g be Graham's number. Let q be g^BB(9999999999 uparrow uparrow uparrow 9999999999). Let p be BB_(q)(q,q,q,q,...) + 1. Let w be the sum of the number of participants at all chaos events until now. The entry is now w^(BB_(p)(p,p,p,p,...) + 1). ==> referential: accek Let S be a set of all valid 35c3 large numbers contest submissions, except this one. Let value(s) be the number defined in the given submission. The number is then max_{s \in S}(value(s)) + 42. If this cannot be uniquely computed, then the number is max_{X \subset S \land product({value(s): s \in X}) can be computed}(product({value(s): s \in X})) ==> referential: j0hn d03 the largest number proposed in #35c3 large number contest (except mine) + 1 ==> referential: kindofcheating781236 One plus the largest valid number given by any participant in the 35c3 large number contest whose name/pseudonym is not "kindofcheating781236" ==> referential: emdete largest_number(all_numbers_in_this_contest) + 1 ==> unknown: felix The following number n for which the following holds: (1) n is a positive natural number (2) n is the smallest number for which there does not exist a sequence of repeated function invocations f(f(f(...f(f(n))...))) (the sequence may be of length 0,1,2, .... or any other natural number) such that f(f(f(...f(f(n))...)))=1 , for the following function f: (3) f is a function mapping from positive natural numbers to positive natural numbers (4) f(k) = if k is even, then k/2, else k*3 +1 end ==> fun: niklas The amount of bytes of error log produced when attempting to compile the following program, "jeh.cpp", with g++: #include ".//.//.//.//jeh.cpp" #include "jeh.cpp" ` (Courtesy of http://web.archive.org/web/20160616172146/http://tgceec.tumblr.com/post/74534916370/results-of-the-grand-c-error-explosion ) ==> fun: `nine` (9) as neuroscience suggests this is the largest integer the human mind can truly comprehend before going to 'many' which obviously is not an integer. It is my hope that this submission will bring me 'many' chocolate bars. ==> fun: JSProofer The largest number in the world is known to be 18. We can proof this easily by javascript. We know that for every integer x the following holds true: x < Infinity We also know, that 1/0 === Infinity Now one can simply check, that parseInt(1/0, 21) === 18 ==> fun: lm1909 length of the queue for 35c3 shirts & hoodies ;D ==> fun: emdete (rotate 8 90) ==> fun: wanne3 #bash like pseudocode with arguments with zeros and infinit length N=3 count() { echo $N | openssl md5 -binary; N=$(($1+1)); count } f() { test $2 -eq 0 && echo $1 || \ f "$(count 2| cat until $1 appears | xxd -p)" } f 4611686018427387903 ==> fun: wanne #bash like pseudocode with arguments with zeros and infinit length f() { test $2 -eq 0 && echo $1 || \ f "$(generiere Nachkommabytes sqrt(2) | cat until $1 appears | xxd -p)" $(($2-1)) } f a 4611686018427387903 ==> fun: pullthek Let's start with the small number G, Grahams Number. Let's define f(n) = (BB^f(n-1))(f(n-1)) with base case f(0) = first number for that the collatz conjecture does not hold, if this number does not exist, define f(0) = R(6, 6). Let's define g(n) = BB((f(n)^(f(n))^g(n-1)) where g(0) = BB(G). Let k = g(BB(G)). Let's take the k first digits of sqrt(tau) and let m be the position the sequence of the first k digits occurs the k'th time. It is not obvious that such a number exists. If this is not the case let m be the largest number that can be computed with a Haskell program that has a size of k bytes. So we defined the relatively small number k. Let's go bigger. Let h be the smallest number bigger than any finite number named by an expression in the language of set theory with k symbols or less. After this hard work we would like to enjoy a glorious joke: Q: Why did the chicken cross the möbius strip? A: To get to the same site. Let l = 2^h - 1 hoping this well be a mersenne prime. Let z be the number of creatures attending congress this year multiplied by the maximum out-bounding traffic at congress in bytes in the first three days. My final number is (g^BB(l))(BB(BB(g(l*z))^2))^g(l*z). ==> fun: not-a-math-guy Its surely not exists but ok let it be 1. As I want to get all 1000 of chocolate bars :) ==> fun: Wuzzy Eröffnungsjahr vom Flughafen BER. ==> fun: emdete base64 -d <